Search results

Search for "iron nanowires" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Focused particle beam-induced processing

  • Michael Huth and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2015, 6, 1883–1885, doi:10.3762/bjnano.6.191

Graphical Abstract
  • article by Gian Carlo Gazzadi and Stefano Frabboni [6]. This leads into the important application field of magnetic nanostructures obtained by FEBID. Luis Rodríguez and coworkers present a detailed study on the influence of shape anisotropy and surface oxidation on the magnetization reversal of thin, iron
  • nanowires [7]. In the article by Oleksandr Dobrovolskiy and colleagues [8], different postgrowth purification treatments for platinum and cobalt FEBID structures are employed to fine-tune the magnetic properties of heterostructures. A novel application of electron beam-induced deposition of amorphous carbon
PDF
Editorial
Published 09 Sep 2015

Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

  • Marcin Krajewski,
  • Wei Syuan Lin,
  • Hong Ming Lin,
  • Katarzyna Brzozka,
  • Sabina Lewinska,
  • Natalia Nedelko,
  • Anna Slawska-Waniewska,
  • Jolanta Borysiuk and
  • Dariusz Wasik

Beilstein J. Nanotechnol. 2015, 6, 1652–1660, doi:10.3762/bjnano.6.167

Graphical Abstract
  • 10.3762/bjnano.6.167 Abstract The main goal of this work is to study the structural and magnetic properties of iron nanowires and iron nanoparticles, which have been fabricated in almost the same processes. The only difference in the synthesis is an application of an external magnetic field in order to
  • form the iron nanowires. Both nanomaterials have been examined by means of transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray diffractometry and Mössbauer spectrometry to determine their structures. Structural investigations confirm that obtained iron nanowires as well as
  • , saturation magnetization as well as Curie temperature differ for both studied nanostructures. Higher values of magnetizations are observed for iron nanowires. At the same time, coercivity and Curie temperature are higher for iron nanoparticles. Keywords: iron nanoparticles; iron nanostructures; iron
PDF
Album
Full Research Paper
Published 29 Jul 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • determination of the coercive field (HC), which depends on the shape of the nanostructure. In the present work, we have used the Fe2(CO)9 precursor to grow iron nanowires by FEBID in the thickness range from 10 to 45 nm and width range from 50 to 500 nm. These nanowires exhibit an Fe content between 80 and 85
  • ; focused electron beam induced deposition; iron nanowires; magnetization reversal; magneto-optical Kerr effect; transmission electron microscopy; Introduction The fabrication of magnetic nanostructures in a single lithographic step by focused electron beam induced deposition (FEBID) is currently an
  • with thicknesses of 25 and 35 nm (but equal length and width) produced different coercive fields [18]. However, a detailed explanation for such phenomenology was not provided. The same group later found that, similar to the case of cobalt nanowires grown by FEBID, a magnetic halo in iron nanowires is
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015
Other Beilstein-Institut Open Science Activities